

SurrobodiesTM – A Novel Approach to Bispecifics...

Ramesh Bhatt, Ph.D. Vice President of Research Sea Lane Biotechnologies

Sea Lane – DDD presentation August 8, 2012

Presentation Agenda

- Introduction to Surrobody structure
- Surrobody advantages directly address bispecific challenges
- Three brief bispecific examples
 - Comparability to antibodies
 - Inhibiting soluble targets in vitro and in vivo
 - Targeting receptors in vitro
- > Summary
- Surrobody Drug Conjugate Teaser

Surrobodies

Highly adaptable platform inspired by endogenous human pre-B Cell Receptor

Sea Lane – DDD presentation August 8, 2012

The Sea Lane Advantage

- The invariant surrogate light chain simplifies and accelerates <u>bispecific development</u> and enables <u>drug conjugation</u> for all existing and future Surrobodies
- Proprietary design of fully human, synthetic libraries mirror natural human diversity enabling rapid, high quality lead generation and simple, comprehensive optimization
- Use of naturally occurring, human germline frameworks provides consistently robust expression characteristics and should reduce immunogenic potential

General Surrobody Strengths

Surrogate Light Chain

- Only known universal heavy chain partner
- Expected low immunogenicity
- Invariant protein that simplifies all steps from discovery through manufacture

Intact Fc

- Imparts effector function and favorable half life
- Known scalable production capable through Protein A
- Bispecific/Drug Conjugate Ready
 - Rapid conversion to enhanced format
- Intellectual Property
 - Granted patents protect basic structure and synthetic human library design

Complete Heavy Chain

SLC

Synthetic Human Surrobody Library Drives Discovery

- ~28 billion productive members
- Patented human diversity productively matches frameworks and CDRs
 - Based on <u>functional</u> diversity
 - Powers companion optimization technology
- Novel library construction processes maximize library fidelity
- > 12 week panning through lead ID cycle time
- Surrobodies found against 14 different therapeutic targets

Surrobodies Provide Ideal Path for Bispecific and Drug Conjugate Applications

Bispecifics

- Simplified structure dramatically reduces required resources
- Antibody-like PK and other beneficial CMC qualities
- Robust in vivo efficacy
- Multiple bispecific formats provide unmatched flexibility

Toxin Drug Conjugation

- Simplified process utilizing the universal surrogate light chain is applicable to all Surrobodies
- Bioanalytic assessment supports robust and stable conjugation
- Resulting toxin conjugated Surrobodies are highly potent

Fc Engineering Improves Bispecific Assembly but Provides an Incomplete Solution

Light chain mismatching generates predominant and undesirable products

Sea Lane Advantage: The Surrogate Light Chain

Invariant surrogate light chain partnering eliminates unproductive combinations caused by mismatching of light chain/heavy chain partners

Sea Lane – DDD presentation August 8, 2012

Bispecific Example #1 Comparability to Antibodies

Sea Lane Biotechnologies – Proprietary

Surrobodies Display Antibody-Like Characteristics

Biochemical

- Long term RT stability >1yr
- > High level protein expression
 - Many >100mg/L in HEK293

Stable following physical stress

- freeze/thaw cycles
- Low pH 3 exposure
- Short term High temp exposure
 at 50°C for 48 hours
- High concentration (100mg/ml)
- All Surrobody formats maintain thermal stability profiles that are similar to commercial antibodies
 - Tm >65°C

<u>In vitro</u>

- High affinity binding (subnanomolar)
- Antagonist and Agonist activities are possible
- Broad epitopic range

<u>In Vivo</u>

- NHP half-life ~1-2 wks
- Excellent efficacy in rodent models of disease

Monovalent Bispecifc Surrobodies Simultaneously Bind Two Distinct Targets

Mammalian Expressed Surrobodies Have Excellent Characteristics

	Format	Unique proteins (# preps)	Avg yield (mg/L)	Intact SgG (%)	High MW "Aggregate" (%)	Low MW "Protein" (%)	Thermal Stability (°C)	RT Stability (months)
6	Standard Surrobody	194 (249)	77	98.2%	1.6%	0.2%	>65	24
//	Bispecific Monovalent Binding	72 (82)	81	88.2%	3.4%	8.4%	>65	12

All 16 possible bispecific Vh framework combinations produce comparable yields in HEK293 transient systems

Sea Lane – DDD presentation August 8, 2012

Size Exclusion and Mass Spec Show High Quality Monovalent Bispecific Complexes

SEC analysis: Cotransfection results in single peak at the appropriate size marker

Mass Spec analysis: Virtually all heterodimeric bispecific

LC-MS Analysis of a Collection of Monovalent Bispecific Surrobodies

Sea Lane – DDD presentation August 8, 2012

Sea Lane Biotechnologies – Proprietary

Monovalent Bispecific Surrobodies are Stable Following Storage at Room Temp for 12 Months

ELISA binding isotherms show no loss of activity between -80°C and room temperature.

The PK Properties of Bispecific Surrobodies are Comparable to Parentals in Cynomolgus

- Naïve groups (n=3) of
 Cynomolgus monkeys
 were administered single
 IV dose of Surrobodies
 (10 mg/kg)
- Serum was tested over a 28 day period
- The overall PK properties are "Antibody-like"

Agent	Half-life (days)	Clearance (mL/hr/kg)	Vss (mL/kg)
Bispecific (HGF/PIGF)	6.04	0.42	77.2
Monospecific PIGF	6.35	0.35	78.5
Monospecific HGF	9.28	0.40	110
HGF IgG	10.88	0.19	75.6

Sea Lane Biotechnologies – Proprietary

Surrobody Thermostability is Comparable to Marketed Antibodies

	Target	Format
SL-002	PIGF	
SL-012	HGF	Monospecific
SL-176	ErbB3	
SL-186	PIGF HGF	Bispecific v1
SL-188		Bispecific v2

Tm was calculated in a fluorescent-based assay of agents in PBS

Bispecific Example #2 Targeting Two Soluble Factors in vitro and in vivo

Sea Lane Biotechnologies – Proprietary

GF x Ligand Bispecific Properties are Similar to Parental Surrobodies

		All values [nM]					
		Ligand-1	Ligand-2		GF		
	Molecule (specificity)	Cell IC50	ELISA Binding	ELISA Inhibition	ELISA Binding	Cell IC50	
	SL-429 (Ligand)	0.281	0.020	0.156			
	SL-516 (GF)				0.086	0.139	
	SL-634 (Ligand x GF) Monovalent Bispecific	Not Tested	0.048	0.955	0.055	2.602	

Anti-GF/Ligand Bispecific Captures the Synergistic Benefits of Dual Inhibition In Vivo

Mice were treated 2x weekly by iv injection. Groups received 5mg/kg each, except bispecific which was 10mg/kg

Anti-GF/Ligand Bispecific Captures the Synergistic Benefits of Dual Inhibition In Vivo

Mice were treated 2x weekly by iv injection. Groups received 5mg/kg each, except bispecific which was 10mg/kg

Bispecific Example #3 In vitro Targeting ErbB3 x Growth Factor Receptor

Sea Lane Biotechnologies – Proprietary

ErbB3 Summary

- ErbB3 represents a pivotal node in regulation of cell proliferation
 - Implicated in the generation of resistance to a *number* of key oncology agents
- Sea Lane's anti-ErbB3 is a potent inhibitor with a novel mechanism of action in ErbB2 overexpressing cells (Molecular Cancer Therapeutics; July, 2012)
- Sea Lane's anti-ErbB3 Surrobodies synergistically enhance the activity of ErbB2 and EGFR antibodies
- Bispecific ErbB3 x GFR surrobodies capably capture a similarly synergistic cocktail

Anti-ErbB3 Surrobodies Enhance the Activity of Trastuzumab

* Nearly identical results were obtained using SL-176 Foreman, et. al., Molecular Cancer Therapeutics 2012

Anti-ErbB3 Surrobody enhancement of anti-ErbB2 provides the rational basis for an ErbB3 x ErbB2 bispecific

Anti-ErbB3 Surrobodies Enhance the Activity of Cetuximab

Anti-ErbB3 Surrobody enhancement of anti-EGFR provides the rational basis for an ErbB3 x EGFR bispecific

Bispecific ErbB3 x GFR Surrobody Captures Complimentary Efficacy of Parental Cocktail

Anti-GFR () Surrobody combined with anti-ErbB3 () Surrobody

27

SL-433

Summary

- > The Surrogate Light Chain is a natural universal Heavy Chain partner
- Sea Lane's fully human synthetic library drives Surrobody discovery
- High level, high quality transient expression accelerates Surrobodies through *in vitro* and *in vivo* research
- Bispecific Surrobodies are highly efficacious with characteristics that are comparable to antibodies
- The Surrobody structure is amenable to additional formats that enable optimal therapeutic approaches including:
 - Multivalent bispecifics
 - Drug conjugation

Surrobody Drug Conjugates

Boosting the anti-tumor abilities of Surrobodies

Surrobody Drug Conjugates

Invariant surrogate light chain partner is the ideal site for drug conjugation

- <u>ALL</u> Surrobodies use the <u>exact</u> same light chain
- One solution will work across the entire platform from monospecific to bispecific agents
- Light chain has been shown to be more desirable for conjugation than heavy chain

Surrobody Drug Conjugation Research Milestones

Engineered Surrobody for drug conjugation

- Modified surrogate light chain allows for 2 toxins per Surrobody
- Possible to further modify to add more toxin
- Toxin addition efficiency appears excellent
- Demonstrated cellular potencies in vitro
 POC target: GFR driven cell proliferation

Bispecific drug conjugation comparable to monospecific Surrobodies

Toxins Conjugate Robustly to Surrobodies

- Analysis of unoptimized Drug Conjugation shows predominance of Surrobodies containing two or one toxins per molecule
- Toxin conjugate: Monomethyl Auristatin E (MMAE)

Surrobody Drug Conjugates More Potently Inhibit In Vitro Proliferation

	100-			Potency [pM]	Efficacy
80 60 60 60 20 0 0	80-	Parent Surrobody Freeingered SLC, control	Parent	0.615	20%
	60-	 Engineered SLC control Engineered SLC #1 + Conjugate Engineered SLC #2 + Conjugate 	Engineered SLC control	0.382	19%
	20-	00088	Engineered SLC #1 + Conjugate	0.058	96%
	0-	- 1 0.001 0.01 0.1 1 10 100 1000 [lgG/SgG] in nM	Engineered SLC #2 + Conjugate	0.156	99%

- Possible to modify to add more toxins
- > Performs as well as, or better than toxin conjugated antibody (not shown)

Bispecific Surrobody Toxin Conjugation is Comparable to Monospecific Conjugation

In unoptimized conjugation reactions almost all the surrobodies are conjugated with most carrying two toxin molecules

Sea Lane – DDD presentation August 8, 2012

Acknowledgements

Technology Development

- Li Xu
- Sandra Wang
- Gordon Leung

Protein Sciences

- Chuck Hannum
- Hieu Tran

Discovery

- Aaron Kurtzman
- Helena Yee
- David Duffin

Program Teams

- Danying Cai
- Medini Gore
- Pamela Foreman
- Phil Kobel

Management

- Lawrence Horowitz
- Michael Horowitz

Contact Information

Sea Lane Biotechnologies 2450 Bayshore Parkway, Suite 200 Mountain View, CA 94043 USA

Michael Horowitz GC/COO <u>michael.horowitz@sealanebio.com</u> (650) 336-1532

Ramesh Bhatt VP of Research <u>ramesh.bhatt@sealanebio.com</u> (650) 325-7402